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ABSTRACT 

The decision of whether to use PLS instead of a covariance based structural 
equation modeling technique such as LISREL for causal modeling can be 
assisted by looking at the differences between principal components analysis 
and common factor analysis.  Through such a process, this paper outlines the 
need for PLS users to shift from merely estimating model parameters to that 
of including measures of predictive relevance.  Unless the communality is 
high and the indicators per construct are large, the PLS parameter estimates 
for construct loadings will likely have a homogenization and overestimation 
bias.  Conversely, the structural paths tend to be underestimated. 
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 I am pleased to see Barclay, Higgins, and Thompson (hereafter BHT) 
produce this article which provides a much needed introduction of the Partial 
Least Squares (PLS) approach for technology researchers.  While the paper 
suggests that  researchers interested in learning about PLS should complete a 
thorough review of principal components analysis, path analysis, and OLS 
regression,  I would extend this by strongly suggesting the need to understand 
the differences between common factor analysis and principal component 
analysis (Widaman, 1993; Velicer and Jackson, 1990).  The arguments concerning 
the pros and cons for choosing one over the other can by analogy be used to 
compare PLS with covariance based techniques such as LISREL.    In both 
situations, issues to be considered include the epistemic relationship between 
data and theory (which includes the issue of factor indeterminacy),  factors that 
affect population parameter estimates (i.e., sample size, communality, number of 
indicators per factor, and sample data distribution),  and the objective for the 
analysis (prediction versus model confirmation).   

 In general, the primary difference between factor analysis and 

components analysis (thus equally true for LISREL and PLS) is whether one 

wishes to explicitly model unique factor variances for manifest variables.  The 

common factor analysis model may be expressed in matrix notation as: 

 

  C −U 2 ≅ F
U

F
U
T = F

RΦF
R
T = C *  

 
where C is the matrix of correlations among manifest variables,   U

2 is a diagonal 
matrix of estimates of unique variance, FU  and FR  are the unrotated and rotated 
factor matrix respectively, Φ  is the matrix of factor intercorrelations, and   C

*  is 
the reproduced correlations among the manifest variables.  

In the case of components analysis, rather than representing the shared variance 
among a set of manifest variables, the total variance is represented in a reduced-
dimensional form.  Thus, the standard matrix equation is represented as: 

 

  C ≅ FU FU
T = FR ΦFR

T = C *  

 
As   U

2  approaches zero, the factor loadings and factor correlations using both 
methods approach identity.  Yet, as BHT note, valid variance of an typical 
indicator tend to be 50 to 83%.  The remaining 17 to 50% unique variance 
represent a combination of valid specific variance (i.e., reliable variance of the 
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indicator that is not shared with the latent variables in the analysis) and 
measurement error.  As the proportion of unique variance increase due to 
specific variance, the greater the difference will be for results obtained from a 
components based method such as PLS contrasted to a factor analytic LISREL 
approach.  This distinction has been shown analytically for models with 
orthogonal factors (e.g., McArdle, 1990) and empirically for models with oblique 
factors (Widaman, 1993). 

McArdle (1990) takes this distinction to form several statements contrasting 
components analysis and factor analysis.   By analogy, I suggest these statements 
should also be considered for PLS and LISREL. 

1)  Choice of method depends on whether the researcher wishes  to maximize 
the multivariate variance of manifest variables or in reproducing the 
population parameters that underlie all the covariances?   

The goal of PLS is primarily to estimate the variance of endogenous constructs 
and in turn their respective manifest variables (if reflective).    Models which I 
have developed yielding significant jackknife statistics can still be invalid in a 
predictive sense.  Thus, I would suggest the focus should be shifted from only 
assessing the significance of parameter estimates (i.e., loadings and structural 
paths) to that of predictive validity.   Predictive sample reuse technique as 
developed by Geisser (1974) and Stone (1975) represent a synthesis of cross-
validation and function fitting with the perspective "that prediction of 
observables or potential observables is of much greater relevance than the 
estimation of what are often artificial constructs-parameters" (Geisser, 1975, p. 
320).   

The PLSX sub module of  Lohmöller's  PLS 1.8 program provides this 
functionality as part of a blindfolding algorithm (1981, p. 5.9-5.12).  In 
blindfolding, portions of the data for a particular construct block (i.e., indicators 
by cases for a specific construct)  are omitted and cross-validated using the 
estimates obtained from the remaining data points.  This procedure is repeated 
with a different set of data points as dictated by the blindfold omission number 
until all sets have been processed.  A resulting relevance measure is thus 
obtained for the endogenous construct in question.  This relevance measure is 
generally more informative than the R2 and the average variance extracted  since 
the latter two have the inherent bias of being assessed on the same data that 
were used to estimate its parameters.  Alternative sample reuse methods 
employing bootstrapping or jackknifing have yet to be implemented.   

2)  LISREL is superior to PLS on mathematical grounds.   

This point refers to the fact that LISREL is a population based model for 
estimating loadings and structural path estimates.  As BHT note, only under the 
joint condition of large sample size and large number of indicators per factor 
will the estimate of the factor loadings and structural path estimates 
approximate that of the LISREL estimate.  Otherwise,  the loadings in a PLS 
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analysis tend to be overestimated and the structural paths, conversely, 
underestimated (Dijkstra, 1983, p. 86).  An examination of the component versus 
common factor distinctions will also suggest that communality represent yet 
another factor.  Widaman's (1993) simulation study, for example,  show that 3 to 
7 indicators are needed for accurate assessment of component loadings for 
orthogonal factors under the condition of high communality in the population 
(i.e., .80 loadings for all indicators).  If the underlying population loadings are 
less saturated at .60, 10 to 18 indicators are needed to obtain an accurate 
assessment.  Otherwise, the estimated loadings tend to deviate from the true 
values by more than 10 percent (e.g., actual .60 loading is estimated as .757, 
actual .80 loading is estimated as .872, and actual .40 loading is estimated as 
.663).  Common factor analysis, on the other hand, is able to extract the true 
underlying population parameters. 

With the tendency for overestimation of loadings, the corresponding structural 
path estimates are conversely underestimated.  Widaman's (1993) simulation 
show that under oblique factor conditions where the population correlation 
among factors is set at .50,  component analysis result in an estimate of  .421 
when an equal  loading pattern for the population is set at .80.  The estimate 
drops to .182 when actual loadings are .40.  Common factor analysis, on the 
other hand, tend to slightly underrepresent the loadings (i.e., .77 instead of .80 
and .35 instead of .40) with a corresponding over representation of the 
correlation at .537 under high communality and .645 for low communality. 

Equally important is the tendency of a components analysis to homogenize the 
loadings for a construct when the actual pattern is varied.  If a three indicator 
factor model have population loadings of .8, .6., and .4,  Widaman's study show 
that a component based analysis using oblique factor rotation result in 
estimations of .771, .769, and .709 respectively.    In the orthogonal condition, the 
estimates are .825, .782, and .642 respectively.   

Finally, item loadings under components analysis can vary depending on the 
test battery of items.  Widaman (1993) performed two components analysis on a 
test indicator with a specified population loading of .6.  In the first analysis, two 
other items were set with population loadings of .80.  In the second analysis, the 
loadings were  .40.  Beyond the expected overestimation of the population 
loading of .60, the estimate differed between the two conditions resulting in .808 
and .702 respectively.  Thus, item loadings estimates from a components analysis 
is not invariant under different test batteries for the same common factor.  
Common factor analyses using iterated communalities and orthoblique rotation, 
on the other hand,  were able to reproduce the population values. 

Thus, superiority of LISREL over PLS refers to the ability to estimate the 
underlying population parameters.  As noted in statement one, this becomes less 
of a concern if the objective is to account for multivariate variance in a predictive 
sense.  Further, under conditions of low theoretical knowledge which BHT 
suggest is true for much of technological based studies, the more conservative 
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estimate of a model's structural paths may be more appropriate.  PLS estimates 
for misspecified models where non-significant structural paths are suggested 
will, by default, not be as large as the equivalent LISREL estimates.   

3)  LISREL is superior to PLS on statistical grounds.   

This statement is relatively contentious and depends on the perspective of the 
researcher.  The reverse statement suggesting that PLS has better statistical 
sampling properties than LISREL can equally be made.  BHT take this second 
position by noting that PLS makes no distributional assumption regarding the 
data.  The statement that PLS makes no distributional assumption relate to the 
asymptotic efficiency of the OLS estimator.  Yet, due to the nature of the PLS 
algorithm, the construct score estimates are biased and are only consistent under 
the condition of high communality, appropriate number of indicators per 
construct, and increasing sample size.  Nonetheless, because PLS is a limited 
information estimation procedure, an appropriate sample size tends to be much 
smaller than that needed for a full information procedure such as LISREL. 

BHT also note that PLS produce component scores while LISREL is inherently 
indeterminate.  Yet, as noted in statement 1 and elaborated in statement 2, the 
value of having PLS component scores need to be articulated.  Under the goal of 
parameter estimation, it is not clear whether PLS weights and loadings (and thus 
PLS scores)  are as generalizable across different samples as those obtained from 
LISREL.   Even with distributional violation, the Maximum Likelihood 
estimation procedure for LISREL can be quite robust and may possibly, as 
alluded to in statement 2, produce better estimates of the population parameters.  
The generalizability issue for multiple group comparisons need also be 
considered.  LISREL provides a statistical basis using a chi-square test for 
multiple group comparison.  The generalizability of PLS scores for group 
comparisons have yet to be determined.   

Predictive relevance, on the other hand, is a different issue that should be further 
explored.  For example, the use of a mean loss function on the holdout data in a 
sample reuse procedure can be a viable means for choice selection of indicators.  
This would be in line with the data analytic exploratory depiction of PLS given 
by BHT.  Likewise, the selection of various structural models can equally be 
assessed in this manner.   

4)  PLS is superior LISREL on practical grounds.   

PLS is computationally more efficient than LISREL in the same sense as a 
components analysis is faster than a Maximum Likelihood factor analysis.  BHT 
clearly articulate this point by noting that large models consisting of many 
indicators and factors can be estimated in a matter of minutes.  In contrast, 
LISREL estimation time increases dramatically as the number of indicators 
increase. 

In summary, an understanding of the issues related to choice of component 
versus common factor analysis can provide a basis for choosing PLS or LISREL 
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as an analysis technique.  BHT clearly articulated that the aim of  LISREL is to 
estimate causal model parameters whereas PLS is to maximize variance 
explained.  To understand this point further, one need only look at the 
component/factor analytic distinctions.   

In both cases, the choice of the indicators and theoretical model still represent a 
necessary condition.  When using PLS,  low theoretical knowledge does not 
necessarily imply  a researcher's inability to define constructs nor the 
nomological network in which these constructs reside.  Instead, it likely depicts 
an exploratory stage where a researcher is testing an ad hoc model with newly 
developed items.   If new scale items are created (likely with an average 
communality of .60), it would seem prudent to have a much larger set of 
indicators per construct (at the level of approximately 12 to 16) in order to obtain 
an accurate estimate of the structural paths.  For PLS, there is less ability to 
disentangle poor indicators within a test battery for a particular construct.  Given 
the homogenization and overestimation bias, I would be cautious of accepting 
items with loadings less than .80.  Finally even if one's model consists of 
constructs with high levels of  internal consistency,  in order to be consistent 
with the causal-predictive goal of PLS,  greater focus should be paid on the 
predictive relevance of a model.    
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